NROSCI 1046: Introduction to Computational Neuroscience

Class Meeting Location and Times: TuTh, 1:00-2:15pm, A214 Langley Hall.
Instructor: Dr. Chengcheng Huang

Office: Langley Hall, A407; E-mail: huangc@pitt.edu
Office hours: Thursdays 4-5 pm. Langley Hall, A407.

Teaching assistant: TBD. The TA will assist students with homework assignments and the final presentation, grade homework assignments and deliver recitations. Students can email TA to ask questions or set up Zoom meetings for office hours. Students can also ask questions in the Discussion board on Canvas.

Lecture: All lectures will take place in person in the assigned classroom. Lectures will not be recorded. I will post some lecture notes on Canvas after each lecture.

Recitation: The TA will deliver recitations once a week, which will cover basic programming skills that are relevant for homework assignments and lectures, as well as supplementary mathematics and clarifications for the lectures. The delivery method of recitations is to be determined.

Course description:

Computational neuroscience applies theoretical and numerical techniques to understand brain functions and neural coding. In this course, students will learn how to simulate and analyze model neurons and networks of neurons, and how simple neuronal networks perform computations. Students will also learn how to analyze spike train data and decode information from neural responses. We will have hands-on MATLAB practice sessions throughout the course. By the end of the course, students will be familiar with the mathematical formulations to study neural coding and network dynamics, and acquire programming skills in MATLAB. Knowledge of linear algebra, probability and differential equations is recommended, but not required.

Tentative course outline:

1. Single neuron models
 - Integrate-and-fire neuron models; Adaptation
 - Matlab session
 - Mean-driven vs fluctuation-driven spiking
Spike train statistics; Poisson process
MATLAB session

2. **Neural encoding and decoding**
 Firing rates; tuning curves
 Spike-triggered average, receptive field
 MATLAB Session
 Single neuron decoding, signal detection theory
 Population decoding
 MATLAB Session

3. **Population models**
 Firing rate model; Bistable systems
 Phase plane analysis
 Working memory and decision-making models
 MATLAB Session
 E/I network; oscillations
 Inhibition-stabilized network
 Hopfield model/ attractive networks
 MATLAB Session

4. **Learning**
 Hebbian learning
 Supervised learning; Perceptron
 Reinforcement learning
 MATLAB Session

Prerequisites: Intro to Neuroscience (NROSCI 1000, 1003) with a minimum grade of B-.
Calculus I (MATH 0220 or equivalent) with a minimum grade of C.

Primary Text: *Theoretical neuroscience.* Peter Dayan and Larry Abbott, MIT Press, 2005
(https://mitpress.mit.edu/books/theoretical-neuroscience)

Additional Recommended Texts:

MATLAB for neuroscientists: an introduction to scientific computing in MATLAB, Pascal Wallisch, Michael E. Lusignan, Marc D. Benayoun, Tanya I. Baker, Adam S. Dickey and
Grading: Six assignments (50%), final presentation (30%), class participation (20%). There is no final exam during the finals week. Grading scale: A/A+: 90-100%, B/B+: 80-89%, C/C+: 70-79%, D/D+: 60-69%, F: <60%. The grading policy does not depend on the risk posture of the university.

Assignments (50%): The course will have 6 assignments. The best 5 assignments will be counted toward the final score. Each assignment will involve a significant MATLAB component and further analysis to be done by the student. For each assignment, students need to submit a write-up to describe the results, and the associated MATLAB code that can be run successfully and generates relevant figures. Students are welcome to work together on homework. However, each student must turn in his or her own assignments, and no copying from another student’s work is permitted. Each assignment needs to be submitted on Canvas before the due dates. Late homework will not be accepted.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Assigned Date</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 31</td>
<td>Sep 9</td>
</tr>
<tr>
<td>2</td>
<td>Sep 13</td>
<td>Sep 23</td>
</tr>
<tr>
<td>3</td>
<td>Sep 27</td>
<td>Oct 7</td>
</tr>
<tr>
<td>4</td>
<td>Oct 11</td>
<td>Oct 21</td>
</tr>
<tr>
<td>5</td>
<td>Oct 24</td>
<td>Nov 4</td>
</tr>
<tr>
<td>6</td>
<td>Nov 8</td>
<td>Nov 18</td>
</tr>
</tbody>
</table>

Final presentation (30%): The subject of the project should be a summary of one or more papers. Students will work in groups of two or three. I will post a list of papers on Canvas, from which students can choose to present. Students can also choose other papers outside the list. Each presentation should be about 10 minutes, and all group members take turns to present. All students must attend the presentation sessions, which will be on Dec 7 & 9 during the lecture time. Students need to email me the paper chosen to present and the names of other group members no later than Nov 19 (all group members must submit their own email).

Class Participation (20%): Each week, students need to post questions and/or answer other students’ questions on the Discussion Board on Canvas. During the final presentations, all students need to attend, comment on other groups presentations and ask questions. Participation during lectures will also be considered.

Disability concerns: If you have a disability for which you are or may be requesting accommodation, you are encouraged to contact both me and Disability Resources and Services
Academic integrity: Students in this course will be expected to comply with the University of Pittsburgh’s Policy on Academic Integrity. Any student suspected of violating this obligation for any reason during the semester will be required to participate in the procedural process, initiated at the instructor level, as outlined in the University Guidelines on Academic Integrity. This may include, but is not limited to, the confiscation of the examination of any individual suspected of violating University Policy. Furthermore, no student may bring any unauthorized materials to an exam, including dictionaries and programmable calculators. To learn more about Academic Integrity, visit the Academic Integrity Guide for an overview of the topic. For hands-on practice, complete the Understanding and Avoiding Plagiarism tutorial.

Health and Safety: In the midst of this pandemic, it is extremely important that you abide by public health regulations and University of Pittsburgh health standards and guidelines. While in class, at a minimum this means that you must wear a face covering and comply with physical distancing requirements; other requirements may be added by the University during the semester. These rules have been developed to protect the health and safety of all community members. Failure to comply with these requirements will result in you not being permitted to attend class in person and could result in a Student Conduct violation. For the most up-to-date information and guidance, please visit coronavirus.pitt.edu and check your Pitt email for updates before each class.